If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying -7x2 + 3x + -4 = 0 Reorder the terms: -4 + 3x + -7x2 = 0 Solving -4 + 3x + -7x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by -7 the coefficient of the squared term: Divide each side by '-7'. 0.5714285714 + -0.4285714286x + x2 = 0 Move the constant term to the right: Add '-0.5714285714' to each side of the equation. 0.5714285714 + -0.4285714286x + -0.5714285714 + x2 = 0 + -0.5714285714 Reorder the terms: 0.5714285714 + -0.5714285714 + -0.4285714286x + x2 = 0 + -0.5714285714 Combine like terms: 0.5714285714 + -0.5714285714 = 0.0000000000 0.0000000000 + -0.4285714286x + x2 = 0 + -0.5714285714 -0.4285714286x + x2 = 0 + -0.5714285714 Combine like terms: 0 + -0.5714285714 = -0.5714285714 -0.4285714286x + x2 = -0.5714285714 The x term is -0.4285714286x. Take half its coefficient (-0.2142857143). Square it (0.04591836735) and add it to both sides. Add '0.04591836735' to each side of the equation. -0.4285714286x + 0.04591836735 + x2 = -0.5714285714 + 0.04591836735 Reorder the terms: 0.04591836735 + -0.4285714286x + x2 = -0.5714285714 + 0.04591836735 Combine like terms: -0.5714285714 + 0.04591836735 = -0.52551020405 0.04591836735 + -0.4285714286x + x2 = -0.52551020405 Factor a perfect square on the left side: (x + -0.2142857143)(x + -0.2142857143) = -0.52551020405 Can't calculate square root of the right side. The solution to this equation could not be determined.
| 72/7= | | (5+3)*(4+2)=x | | 31=3G-9 | | x+(x-2)=108 | | (5+3)*(4+2)= | | 5(3m-2)+3(m+4)= | | 2/sqrt5 | | 5x+9=x+17 | | 9x+5=x+69 | | x-25=58 | | 8x-3=8x-9 | | 3n^2-9n+7=0 | | g(x)=3x^2+6x-1 | | 5x+25x+1=45 | | 5x+15=215 | | P-9/7p-63 | | 3.5n+n+.75n=19 | | 40-16=3(x-3) | | x^2=16/12 | | 5x+2(x+1)=13 | | 4n+.25n=19 | | xsq=5y | | -4y-8=6y+32 | | 7*x-(4-3*x)=5+(3*x-1) | | 9y-6=4y+9 | | x^4-119x^2-3600=0 | | 7.54/6.28=6.28r/6.28 | | 49x^2-28x+4-16=0 | | 14x+8y=108 | | 27+2y-4=10y-12-3y | | 6(3x-0.3)=8x-1.8 | | y=-1/2x7 |